A NEW GENERAL METHOD FOR SYNTHESIS OF KETENE DITHIOACETAL

Yoshimitsu Nagao, Kaoru Seno, and Eiichi Fujita*

Institute for Chemical Research, Kyoto University, Uji, Kyoto-Fu 611, Japan

<u>Summary</u>: Dithioacetals (1) were treated with n-butyllithium and 2,2'-dipyridyl disulfide to give ketene dithioacetals (3) in high yields, which constituted a new efficient synthetic method for the latter compounds.

Ketene dithioacetal (3) has been reported to show the interesting reactivities. 1,2,3 It must develop as a very useful compound for exploitation of new reactions and syntheses. Thus, many synthetic methods for ketene dithioacetal have been exploited in recent years. 1,2,4,5 Most of them, however, seem to be not convenient, because of the specific precursors [e. g. compound (4) or (5)]. 1,4,5

We have exploited a new convenient synthesis of ketene dithioacetals (3a-k) utilizing the bifunctionality of pyridine 2-thio group, which is reported here. (Scheme 1)

Scheme 1

Dithioacetals (1a-k) obtained readily from aldehydes by usual treatment with 1,3-propanedithiol and BF₃-Et₂O were dissolved in THF, respective (4) X=H,Si(CH₃)₃ ly, to which a solution of n-BuLi (1.2 eq) in n-hexane was added dropwise (5) X=P(OCH₃)₃ or P(C₆H₅)₃ at -40° with stirring under N₂. The mixture was slowly warmed up to -10° over 1h and stirred for further 1h at the same temperature to accomplish the formation of 2-lithio 1,3-dithiane derivative. Then the mixture was cooled to -70°, to which a solution of

4404 No. 45

2,2'-dipyridyl disulfide (1.2 eq) in THF was added dropwise. Finally, the mixture was slowly (over 2~3h) warmed up to room temperature to afford desirable ketene dithioacetals (3a~k) in high yields (85~99%).

The similar performance for preparation of ketene dithioacetals was achieved also by using 2,2'-dithio-bis(benzothiazole) ($\frac{6}{6}$). [($\frac{1}{1}$ f)+($\frac{3}{4}$ f) in 75% yield.] Treatment of ($\frac{1}{1}$ k) with n-BuLi and 4,4'-dipyridyl disulfide also resulted in the formation of the ketene dithioacetal ($\frac{3}{4}$ k) in 74% yield. In the use of diphenyl disulfide, however, orthothioester was yielded: compound ($\frac{7}{1}$) (91%) from ($\frac{1}{1}$ f) and ($\frac{8}{1}$) (85%) from ($\frac{1}{1}$ k). These facts suggest that the reaction may proceed not only via a potential transition state ($\frac{2}{1}$) (Ei like process) involving the bifunctionality of pyridine-2-thio group but also via El like process (see Scheme 2) involving the "Pull-Push" effect between pyridine-4-thio group and S atoms of 1,3-dithiane.

Because dithioacetal (1) can be synthesized also from 2-lithio-1,3-dithiane and alkyl halide, 7) our new method may have a great generality and promise its utility.

Acknowledgement

Scheme 2

This investigation was supported in part by Grant-in Aid for Scientific Research (37117, 1978), The Ministry of Education, Science and Culture.

References and Notes

- 1. D. Seebach, M. Kolb, and B.-Th. Gröbel, Chem. Ber., 106, 2277 (1973).
- 2. E. J. Corey and A. P. Kozikowski, Tetrahedron Lett., 925 (1975).
- 3. N. H. Andersen, Y. Yamamoto, and A. D. Denniston, *ibid.*, 4547 (1975).
- 4. F. A. Carey and J. R. Neergaard, J. Org. Chem., 36, 2731 (1971).
- 5. P. F. Jones and M. F. Lappert, Chem. Comm., 526 (1972).
- 6. Yield of ketene dithioacetal.
- 7. E. J. Corey and D. Seebach, Angew. Chem. Int. Ed. Engl., 4, 1075, 1077 (1965).

(Received in Japan 6 August 1979)